
Action-Conditioned Visual Prediction for Robotic Manipulation

Anirudh Pai Ryan Cheng Junhua Ma

Abstract

We investigate the task of action-conditioned visual pre-
diction in robotic manipulation: given a sequence of past
RGB frames and associated low-level robot actions, can we
predict the robot’s future visual observations? This capa-
bility is crucial for model-based planning and sim-to-real
transfer, enabling agents to reason over future states with-
out environment interaction. Using the large-scale DROID
dataset, we propose a generative flow matching model
model that predicts future frames from a wrist-mounted
camera viewpoint, conditioned on prior frames and joint-
level actions. To urge the model to learn actions—rather
than simply reproducing the last ground-truth frame in the
context horizon—we explore several training strategies and
evaluate their effectiveness through visual assessments of
stability during auto-regressive rollout. In particular, we
find that cascading UNets during training significantly im-
proves inference-time stability. These findings highlight that
modeling action-conditioned dynamics in the visual domain
is feasible even in complex manipulation settings, paving
the way for its integration into planning pipelines.

1. Introduction

The ability to reason about the consequences of actions is
a hallmark of intelligent behavior—especially in robotics.
While many recent advantages have focused on reasoning
in the language space, action models must also learn to rea-
son directly in the visual domain, enabling them to antici-
pate how their actions will affect the world around them to
a greater degree of granularity. In this work, we investigate
action-conditioned video prediction, the task of generating
future observations autoregressively, conditioned on prior
observations and actions. Such predictions would implic-
itly encode scene dynamics, object interactions, and contact
events—without requiring explicit supervision.

However, modeling accurate and stable visual dynam-
ics in robotic manipulation remains challenging. In real-
world scenes, objects are diverse and oftentimes partially
observable, leading to error compounding and collapse dur-
ing long-horizon prediction often lead to drift or collapse.

Figure 1. Overview of World Model Setup

Moreover, many existing approaches are developed and
evaluated on synthetic datasets that target a narrow domain,
limiting their generalization to real-world manipulation.

In this work, we attempt to address these gaps. More par-
ticularly, we use the DROID dataset, which provides thou-
sands of Franka Emika episodes containing manipulation-
heavy tasks. Each episode has synchronized high-resolution
RGB observations, and joint-level action vectors, making
this dataset ideal for our world modeling purposes. We de-
velop a flow matching-based generative model (Figure 1)
that predicts future camera observations conditioned on
both visual context and robot joint velocities. Compared to
diffusion models or other latent dynamics approaches, flow
matching offers simpler and more stable training while still
enabling flexible conditional generation.

Through extensive ablation, we propose cascading U-
Nets, a method of training that facilitates more stability dur-
ing inference. While our method does not yet constitute a
complete world model for planning and control, it demon-
strates a clear improvement over our traditional flow match-
ing baseline, hinting that there is scope for more improve-
ment in this direction.

2. Related Work

2.1. Latent World Models

Latent world models aim to learn compact internal repre-
sentations of the environment dynamics to enable planning
and control. A prominent example is PlaNet [3], which
learns a stochastic latent dynamics model from images and
performs planning in the latent space using model predic-
tive control. Building on this, Dreamer [4] improves effi-



ciency by using imagined rollouts in the latent space to train
both the value function and the policy, making it suitable for
long-horizon reasoning and control from high-dimensional
observations. However, both papers acknowledge the diffi-
culty of achieving such planning with predictions made in
the visual domain, which is an ongoing challenge today.

2.2. Pixel-Level World Models for Games

World models that operate directly in pixel space have also
gained attention, especially in game environments. SimVP
[2] proposes a simple yet effective fully convolutional ar-
chitecture for video prediction, demonstrating strong per-
formance on synthetic and natural video benchmarks.

More recently, DIAMOND [1] introduces a diffusion-
based world model that preserves high-fidelity visual details
and improves downstream policy learning. DIAMOND
is applied to both 2D environments like Atari and more
complex 3D games such as CS:GO. To train its genera-
tive model. DIAMOND leverages the Elucidated Diffusion
Model (EDM) framework [6], which uses optimal noise
schedules, data augmentations, and loss rebalancing to sta-
bilize and improve diffusion training. This setup enables
DIAMOND to model pixel-level dynamics with greater pre-
cision, resulting in more sample-efficient and visually accu-
rate world predictions.

2.3. World Models for Robotic Manipulation

Though much success has been seen in applying such
world models to synthetic environments (like those in video
games), robot manipulation presents unique challenges that
make building world models much trickier. Contact dy-
namics, occlusions, and partial observability limit action
representations from fully describing observation changes.
To combat this, Masked World Models [10] use masked
autoencoders to separately learn visual representations and
latent dynamics, achieving improved sample efficiency in
robotic control tasks.

While not explicitly a world model, Gato [9] demon-
strates that a single transformer architecture can perform
diverse tasks—ranging from vision and language to robotic
control—highlighting the potential of unified architectures
for generalist agents.

3. Method
3.1. UNet Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [5]
emerged in 2020 as a powerful class of generative models
that synthesize high-quality images by iteratively denoising
samples from a noise distribution. Given a data distribution
pdata(x), diffusion models define a forward noising process
that gradually perturbs a data sample x0 into a Gaussian
noise xT through a sequence of latent variables {xt}Tt=1.

Specifically,

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

and ᾱt is the cumulative product of noise schedule parame-
ters. The reverse process learns to invert this corruption by
modeling the conditional distributions pθ(xt−1 | xt) using
a neural network.

For our setup, we adopt a UNet model for our denoising
network fθ(xt, t), which predicts the original clean signal
x0 for any given latent variable xt. The UNet model con-
sists of an encoder-decoder structure with skip connections
that preserve spatial detail across different resolution lev-
els. This architecture has been shown to be effective in cap-
turing both global structure and fine-grained local details,
which allows for high-fidelity generation.

To condition our UNet based on actions and noise
timestep t, we use a feature-based linear modulation (FiLM)
setup formulated as

h′ = FC(a) ∗ h+ FC(t)

given actions a, timesteps t, UNet hidden embedding h and
fully-connected layer FC. To condition our UNet with mul-
tiple past frames, we simply stack the frames and concate-
nate with the input noisy image xt along the channel axis.

To improve the generated results, we also apply
classifier-free guidance (CFG) during sampling which gen-
erates final prediction u with both a conditional prediction
ucond and unconditional prediction uuncond based on the
formulation

u = uuncond + γ(ucond − uuncond)

for some guidance scale γ. [8]

3.2. Flow Matching

However, initial experiments using DDPM proved to be
unsuccessful, as training dynamics prevented fast conver-
gence. Moreover, DPPMs often require a large number of
timesteps during sample-time, which is a pitfall of apply-
ing them to world modeling; ideally, we are able to train
a model that is able to sample efficiently, allowing it to be
used in real-time simulations.

To combat this, we instead propose to use flow matching.
We employ flow matching [7] to iteratively denoise images
by learning a vector field that transitions noisy data toward a
clean distribution. Given a noisy sample x0 ∼ N (0, 1) and
a clean sample x1 from the training data, the flow u(x0, t),
representing the velocity of this transformation, is defined
as the derivative of xt with respect to time:

u(x0, t) =
d

dt
xt = x1 − x0.



Figure 2. Overview of Single U-Net diffusion model setup for
K=5, which conditions on past 5 frames H1 to H5 and actions A1
to A5, and predicts the difference between next and current frame
H6-H5.

The UNet model uθ(xt, t, o, a) is trained to approximate
this flow, minimizing the objective:

L = Ext,t,o,a

[
∥(x1 − x0)− uθ(xt, t, o, a)∥2

]
.

This approach leads to efficient pathing for the UNet model,
leading to better results.

3.3. Alternate Parameterization: Difference Pre-
diction

Further ablations revealed that the above parameterization
is sub-optimal—the training dynamics urge the model to
blindly reproduce the last ground-truth observation, rather
than truly learning the effect of actions in the visual space.
We re-parameterize the model, therefore, to predict the dif-
ference between the last ground-truth frame and the next
observation. The idea is that computing a loss between the
difference (though in theory, should not make a difference),
will help influence training dynamics to emphasize action
conditioning. Thus, we update our objective: x1 and x0,
instead of being clean and noised versions of samples from
our dataset, are now clean and noised versions of the differ-
ence between adjacent observations from the same episode.

L = Ext,t,o,a

[
∥(x1 − x0)− uθ(xt, t, o, a)∥2

]
.

A diagram of this architecture is shown in Figure 2.
We show later that this parameterization leads to greater

inference-time stability, especially when we evaluate the
model on auto-regressive sampling over longer horizons.

3.4. Cascaded UNet

As a final experiment, we also try to cascade many UN-
ets into a single pipeline (Figure 3). The idea behind this
methodology is that the UNet at each subsequent layer will
be trained on outputs of the UNet that came before it. In
this setup, the final UNet in the cascade is trained mostly on
model outputs, and does not see much ground-truth infor-
mation during training. As a result, we found sample-time
rollouts to be far more stable, since the model learns to .

3.5. Transfer Learning

We also experiment with using a pretrained backbone UNet
for the cascaded UNets setting, with a ResNet 34 encoder

Figure 3. Overview of Cascaded U-Net diffusion model setup for
K=5, where later models conditions on predicted frames from ear-
lier models. The last model is used for sampling.

and pretrained on ImageNet. We modify the architecture
with Feature-wise Linear Modulation (FiLM) layers to in-
corporate the time and action conditioning right after the
bottleneck in the UNet architecture [8]. We also try freez-
ing the pretrained encoder layers for the first 5 epochs out of
50, but do not note any significant changes in performance
from doing so.

3.6. Dataset

We use the DROID dataset, which contains a large num-
ber of manipulation trajectories collected from the Franka
7DoF robot arm. Each trajectory contains high-resolution
frames captured from three different camera angles, and is
annotated with joint-level DoF positions, velocities, and ac-
tions. Two samples from the dataset are shown in 4

When training on observations from the two exterior an-
gles, it was hard to accurately evaluate the ability of our
model to learn actions; the difference between adjacent ob-
servations is so small that even models outputting the last
ground-truth frame results in trajectories close to the ground
truth during inference. In this project, therefore, we focus
some of our attention on learning actions from the perspec-
tive of the wrist (wrist image left), as this contains the most
background optical flow as well as one of the exterior per-
spectives of the robot, (exterior image 1 left, which offers
the most scope for evaluating different training setups.

Lastly, we focus on a small subset of the data named
Droid 100, which contains a relatively small number of tra-
jectories compared to the original, full dataset. We do this
due to computational constraints; training on the full dataset
simply took too long to train for the scope of this project
(though it is definitely an avenue for future exploration).



Figure 4. Two samples from Droid 100. Displaying two view-
points for each sample.

4. Experiments
4.1. Traditional Flow Matching Setup

To address initial convergence-related issues with a DDPM
setup, we first attempted to use traditional flow match-
ing. As shown in Figure 6, flow matching converges sig-
nificantly faster and exhibits less overfitting compared to
DDPM. The loss curves and qualitative comparisons be-
tween ground-truth and sampled observations (Figure 5)
initially indicated strong performance. However, further
evaluation revealed that the model failed to effectively cap-
ture action-conditioned dynamics, highlighting a key limi-
tation in this setup.

When visualizing auto-regressive rollouts, we ob-
served that the model repeatedly output its most recent
frame—effectively copying its own previous prediction dur-
ing inference. This led to static observations that degraded
into noise as the rollout horizon increased (Figure 7).

To further evaluate the model’s reliance on actions, we
zeroed out the action vectors during inference. Surprisingly,
the model still reconstructed frames with similar fidelity,
confirming that it had largely ignored the action inputs dur-
ing training.

4.2. Flow Matching With Difference Prediction

To address this limitation, we re-parameterized the learning
objective as detailed in Section 3.3, and observed a marked
improvement in the model’s reliance on action condition-
ing. Specifically, we computed the loss between the model’s
output and a noised version of the difference between con-
secutive frames, rather than the full observation itself. This
encouraged the model to focus on frame-to-frame changes
driven by actions, rather than reconstructing static content.
Figure 9 shows the results during inference-time, as well
as inference results from using a pretrained backbone and
cascaded flow matching. Although the model is still quite
unstable, it is now able to output non-static trajectories, and
learn a limited form of action dynamics in the real world.

4.3. Cascaded UNet

Finally, we perform a variety of ablations by cascading UN-
ets. Preliminary results suggest that increasing the num-
ber of models tends to lead to increase in stability, up to
the length of the horizon window (increasing the number of

Figure 5. Traditional FM: Ground-Truth vs Predicted

Figure 6. Traditional FM Training Losses

models beyond this would not have any added benefit).
We show some of our inference-time visualizations in

Figure 9. As displayed in the image, the model is clearly
able to maintain image consistency for a far higher number
of frames, suggesting that exposure to model output dur-
ing training is vital. We also visualize some predictions of



Figure 7. Traditional FM Rollouts. Note the gripper in the Ground Truth is moving downwards, but is stationary in the Flow Matching
rollout.

Figure 8. FM Difference Prediction Training Losses

camera frames on the gripper in figure 11. We can see that
the model does seem to predict some of the motion of the
gripper as it moves away from the table.

The training curve for our best cascaded UNet model is
plotted in Figure 10. The UNet has a hidden dimension of
256 and is trained on a horizon of 10 frames and 5 cascaded
models. Interestingly, the training losses for the cascaded
UNets (and the Flow Matching Difference Prediction) are
generally higher than that of single UNets, but the roll-
outs are far more stable, presumably because the model is
more generalized and robust to slightly out-of-distribution
images.

4.4. Pre-Trained Backbone

Finally, we try our cascaded UNet implementation with a
pre-trained backbone (specifically, a ResNet 34 encoder)

as well as the single Flow Matching Difference Predictor.
We can see from Figure 9 that using a pretrained UNet (a
ResNet 34 encoder trained on ImageNet) does make a small
difference in the robustness of the model to veering out of
distribution in the cascaded flow matching model but not
in the single UNet difference predictor. This is probably
because the greater sample efficiency was more beneficial
to training the multiple models in the cascaded UNets by
making sure each already had some representation of the.
natural image space. This extension did not result in any
great increase in quality compared to the Cascaded UNet of
the previous section, however. Training losses and an auto-
regressive frame-by-frame comparison are shown in Fig-
ures 14 and 9. We believe training for more epochs would
result in better results using the pre-trained backbone, and
would like to try this in a future iteration of this project.

5. Conclusion

In this project, we explored action-conditioned visual pre-
diction for robotic manipulation using generative flow
matching. By conditioning on past visual observations and
low-dimensional action data (joint-level), we were able to
architect a world model that is able to stay stable during
sample-time for several frames at a time. Our experiments
on the DROID dataset showed that navie flow matching of-
ten leads to the model ignoring the action conditioning. Re-
parameterizing our UNet to predicting the difference be-
tween adjacent observations mitigated this effect, improv-
ing the training dynamics to urge more apparent action-
conditioning. Finally, we introduce a cascaded UNet ar-
chitecture to improve inference-time stability during auto-
regressive rollout. By optimizing a model that sees mostly
model outputs during train-time, we show that we can in-



Figure 9. Comparison Rollouts of Flow Matching Difference and Cascaded Flow Matching with and without a pretrained backbone. From
this figure it’s hard to see (see the website for GIFs), but each of these models is able to predict the motion of the gripper.

Figure 10. Cascaded FM Training Losses

crease robustness to auto-regressive noise. While our ap-
proach remains limited in rollout horizon and data scale, we
believe that it is a promising foundation for integrating vi-
sual prediction models into model-based planning and sim-
to-real pipelines.

6. Supplemental Material
GitHub: Link
Website: Link

The website contains supplemental visuals that cannot be
displayed directly on PDF (i.e, GIFs and other animated vi-
suals).

References
[1] Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kan-

ervisto, Amos Storkey, Tim Pearce, and François Fleuret.
Diffusion for world modeling: Visual details matter in atari.
In NeurIPS, 2024. Spotlight. 2

[2] Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z. Li.
Simvp: Simpler yet better video prediction. In CVPR, 2022.
2

[3] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Ville-
gas, David Ha, Honglak Lee, and James Davidson. Learn-
ing latent dynamics for planning from pixels. arXiv preprint
arXiv:1811.04551, 2019. 1

[4] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and
Jimmy Ba. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2020. 1

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Infor-
mation Processing Systems, pages 6840–6851. Curran Asso-
ciates, Inc., 2020. 2

[6] Tero Karras, Miika Aittala, and Timo Aila. Elucidating the
design space of diffusion-based generative models. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2022. 2

https://github.com/apai25/cs280-final-proj
http://cs280.s3-website-us-west-1.amazonaws.com/


Figure 11. Cascaded UNet Rollout with Gripper Camera. The gripper is moving away from the table after picking up the pen.

Figure 12. Pretrained FM Difference Prediction Training Losses

[7] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maxim-
ilian Nickel, and Matthew Le. Flow matching for genera-
tive modeling. In The Eleventh International Conference on
Learning Representations, 2023. 2

[8] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI con-
ference on artificial intelligence, 2018. 2, 3

[9] Scott Reed, Konrad Zolna, Emilio Parisotto, Alexander
Novikov, et al. A generalist agent. TMLR, 2022. 2

[10] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu,
Stephen James, Kimin Lee, and Pieter Abbeel. Masked
world models for visual control. In CoRL, 2022. 2

Figure 13. Pretrained Cascaded UNet Prediction Training Losses

Figure 14. Pretrained Backbone w/ Cascaded UNet Training
Losses


	. Introduction
	. Related Work
	. Latent World Models
	. Pixel-Level World Models for Games
	. World Models for Robotic Manipulation

	. Method
	. UNet Diffusion Models
	. Flow Matching
	. Alternate Parameterization: Difference Prediction
	. Cascaded UNet
	. Transfer Learning
	. Dataset

	. Experiments
	. Traditional Flow Matching Setup
	. Flow Matching With Difference Prediction
	. Cascaded UNet
	. Pre-Trained Backbone

	. Conclusion
	. Supplemental Material

