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1. Extended Abstract

Neural network plasticity describes the ability of a trained
neural network to learn new tasks. Past experimental and
theoretical studies have shown that plasticity tends to de-
crease as training continues (Lyle et al., 2023) (Dohare et al.,
2023) (Berariu et al., 2021). This phenomenon is especially
problematic in cases where the target of the model changes
during the training epoch such as in the fields of contin-
ual learning and reinforcement learning. Neural network
plasticity loss has been previously studied for artificially
structured supervised reinforcement learning tasks such as
continual classification for MNIST and ImageNet (Dohare
et al., 2023). These supervised tasks are generally based
on problems of moving regression. Such problems have
changing target variables that test the ability of the neural
network to adapt to new information. This concept of a
changing environment is also important in reinforcement
learning tasks where it is not the regression variable that is
changing but the environment of the agent itself. Thus, high
plasticity is essential to reinforcement learning algorithms
as the environment can change quickly and unexpectedly.

In this paper, we apply various strategies to maintain net-
work plasticity on a standard online implementation of DQN
on the Atari MsPacman environment, as well as on the im-
plementation of offline-to-online fine-tuning for IQL learn-
ing on the Pointmass Hard environment. We evaluate two
metrics that have been proposed to correlate with plastic-
ity, (Dohare et al., 2023) the average effective rank (Roy &
Vetterli, 2007) and the weight magnitude of the layers of
the network, as well as a metric that we posit would also
correlate with plasticity: the percentage of units that are
updated for any given batch (Lyle et al., 2023). By studying
these metrics we hoped to better understand plasticity from
a statistical point of view.

Motivated by our quantitative metrics of plasticity, we ap-
plied a method of plasticity injection (Nikishin et al., 2023)
to retain plasticity during the training process. This method
works by freezing the original critic network and training
a new network during the learning process. This in theory
allows the neural network to remain “fresh” and retain its
qualities that allow it to learn. We then tracked our metrics
and performance before and after the plasticity injection on

the DQN agent in LunarLander and MsPacMan and the IQL
agent in PointMassHard.

We also attempted loss function regularization. Motivated
by classical methods such as LASSO and RIDGE. By
adding regularization terms in our loss function and ad-
justing them to better fit the challenge of combating plastic-
ity loss, we hope to encourage metrics of plasticity such as
weight magnitude to remain high during the training process.
We also examine the technique of layer normalization with
these metrics, which has been proposed to limit the mag-
nitude of the Hessian of the loss function (Ghorbani et al.,
2019). This hypothetically smooths our loss landscape and
reduces internal covariate shift allowing our neural network
to learn new tasks efficiently.

2. Metrics Tracked

We studied how three primary metrics relate to the evalua-
tion return and the plasticity of the critic network. These
metrics are the average effective rank of the layers of the
network, the average weight magnitude of the network, as
well as the percentage of units that are updated in a given
training step. Two of these metrics have been previously
studied in (Dohare et al., 2023) and (Lyle et al., 2023) (ef-
fective rank and weight magnitude), and the third metric
(percentage of updated units) is an original metric. Each
of these metrics is logged every 1000 environment steps to
save computational resources.

Our study slightly differs from previous studies on plasticity
loss in that other studies demonstrate plasticity loss directly
by training the same network on sets of distributions delib-
erately shifted from the original, usually in sets of “epochs”.
These shifted distributions can be completely different en-
vironments than the original environment the network is
trained on. However, in our study, we study the plasticity
and performance of a network over a large number of envi-
ronment steps, for which the distribution shift is within the
same environment and is steady over time. This is closer
to the settings for which reinforcement learning agents are
applied. To determine whether plasticity loss occurs and
quantify the relative plasticity of a network, we characterize
empirically the point at which the evaluation returns of the
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Figure 1. Performance results for each algorithm implemented on the Atari MsPacman environment. These are single runs with values
that have been smoothed using an exponential moving average with a weight value of 0.8 for ease of visualization. All have similar
performance except for the standard implementation, with LayerNorm performing slightly better than the rest and Plasticity Injection

performing slightly worse.

network start to stabilize, and analyze how the metrics relate
to the returns up to and after this point.

The effective rank of a matrix is similar to the rank of a
matrix in that it quantifies how strongly each dimension
influences the transformation induced by a matrix, and has
been shown to decrease over time with plasticity loss. It
is a continuous measure that ranges from 1 to the rank of
the matrix. A low effective rank shows that a small number
of dimensions have a significant effect on a transformation,
while a high effective rank shows that most of the dimen-
sions contribute equally. For a matrix A € R™*™ with
singular values oy, for k = 1,2, ..., max (n, m), we define
“probabilities” pr = ot where llo||1 is the L1 norm of
the vector o containing all the singular values of A. The
effective rank of A is defined as

max (n,m)

> prlogpy

k=1

erank(A) = exp | —

For neural networks, effective rank represents the number of
units of a hidden layer that can affect the output of the layer.
Low effective rank means that most units do not provide
useful information. This can be a good or a bad thing when
it comes to plasticity, as low effective rank means that some
of the units could be repurposed to learn new information
without sacrificing the current complexity of the model. It

might also be an indicator that most of the units could be
dead and have low to zero gradients when trained.

The average weight magnitude of a network has been shown
to increase over time with plasticity loss. It is measured by
adding up the absolute value of the weights of a network
and dividing it by the total number of weights. High-weight
magnitudes have been associated with learning instability,
such as the exploding gradient problem in recurrent neural
networks, and can lead stochastic approximation algorithms
used to train networks to diverge as they rely on the gradients
remaining bounded.

Finally, we chose to track the percentage of updated units
in a network by counting the number of units in each layer
with a nonzero gradient after each training batch. This is
similar to the idea of tracking dead units - units for which
there is zero gradient for all training points, rendering them
immutable. The metric we propose is better suited for online
reinforcement learning as in online reinforcement learning
there does not exist a fixed training set. We hope to see a
consistently high percentage of updated units throughout
training, as this is an indicator that the algorithm is contin-
uing to update itself and maintain plasticity. However, we
would not want the percentage of updated units to be too
high too often throughout training, as this could be an indi-
cator that the model is forgetting information that it learned
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previously.

3. Algorithms and Techniques
3.1. Plasticity Injection

To propel agents to keep learning and exploring their envi-
ronments, we implemented plasticity injection on two pairs
of agents with their respective tasks and environments: first,
a DQN agent in LunarLander and MsPacman, and second,
an IQL agent with online fine-tuning on the PointMass Hard
environment.

We denote hy (x) as the original critic network; upon in-
jecting plasticity, we will first freeze hy (x), then initialize
two new networks with the same layers and dimensions as
hg (x): he; (z) is now our critic that will start to train from
that step onward and kg, () contains the same weights as
hy; (z), but stays frozen so its gradients are not updated
(Nikishin et al., 2023).

To implement the code of plasticity injection, we specified
a step in which we inject plasticity. To update the critic, we
will compute all possible Q-values from the current state (or
observation) with the formula hg () + (he; () — hgy (2)).
The difference of the latter two terms serve as the residual
so we maintain a baseline for future action evaluations.

In our experiments, we manually choose the steps for plas-
ticity injection by first running the baseline algorithm to
observe the performance of evaluation return. From this
initial graph, we can determine where the return starts to
stabilize, which we hypothesize is due to plasticity loss - the
agent is not incentivized to explore new actions.

We also propose a new algorithm of injecting plasticity twice
to attempt to further boost exploration.

(ho (x) + (hoy (x) — hoy (2))) + (hoy () — hoy ()

hgy (z) is our new critic in training and hgy () serves as
the critic with a frozen identical copy of the parameters
randomly initialized in the critic being trained. We treat the
first term as our previous critic that is now frozen. This algo-
rithm operates in the same way as single plasticity injection
up until the step at which plasticity is injected a second time.
This allows us to encourage the agent to more dynamically
adapt to the new environment transitions. From the second
injection point onward, we calculate all possible Q values
of the current observation with the above formula.

3.2. Regularization

We implemented several variations of the standard L? Regu-
larization to the DQN critic loss, replacing the critic update

with:

b1 argmin | Y (y; — Qo(sja5))” + A(k)|| ]

€3] -
pe J

where y; is the target value and A, what is traditionally a
hyperparameter used in regularization, is modified to vary
according to a pre-specified schedule based on the environ-
ment step. Our goal with using regularization is to ensure
that the weight magnitude of the critic network remains low,
which is desired since weight magnitude is associated with
plasticity loss. We include two original variants (as far as we
are aware) of L? Regularization which we dub Incremental
L? Regularization and Periodic L? Regularization.

For Incremental L? Regularization, we steadily increase the
value of A linearly as training continues, from a predefined
start value to a predefined end value. The idea behind this
is that plasticity loss is more likely to occur late into train-
ing, and so we only want to start regularizing the weights
of the network late into training. Otherwise, normal L2
Regularization could interfere with training early on and in
the worst case result in loss of information that the network
learned earlier.

For Periodic L2 Regularization, we train the network with
L? regularization for N = 500k steps, then proceed to train
the network normally for M = 100k steps (with fixed \)
and repeat for as long as training occurs. This is similar
in idea to the shrink-and-perturb trick (Dohare et al., 2023)
which shrinks the weights of the network directly and adds
random noise. However, our method is implicitly applied
through the loss. Like in Incremental L? Regularization,
we hope to prevent early interference with the network’s
training but ideally allow the network to grow periodically
before trimming the weights slightly.

3.3. Layer Normalization and LeakyReLLU

Another technique we investigated was applying layer nor-
malization after every convectional and fully-connected
layer in the model. This has been proposed to improve
network performance by regularizing the loss landscape,
providing more benefit to environments that tend to have
ill-conditioned Hessians of the loss function or the gradient
covariance of the standard model is degenerate (Lyle et al.,
2023). We seek to understand how this technique affects
our proposed metrics and whether performance gains can
be attributed to changes in these metrics.

We also experimented with using LeakyReLU activations in
place of standard ReL.U activations. This is to prevent the
formation of dead units that might occur if standard ReLU
was used, as standard ReLU sets the output to zero of any
unit that has a value of less than one and provides a large
flat region where the gradient is zero.
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4. MsPacman Results and Analysis

We first ran the standard implementation of DQN on MsPac-
man for 4.5 million environment steps (returns and metrics
can be provided upon request). Since the returns seemed to
stabilize starting around 2 million steps, we chose to per-
form all our runs up to that point due to computation and
memory constraints. To determine the scale at which plas-
ticity loss occurs and measure the network’s relative plastic-
ity, we empirically assess the point at which the network’s
evaluation returns stabilize. Subsequently, we analyze the
relationship between metrics and returns both leading up to
and following this stabilization point.

Overall, we find that all the techniques generally outperform
the standard DQN implementation to around the same de-
gree (see Figure 1). Layer normalization seems to generally
perform the best, while plasticity injection generally does
worse up to near the end, where LeakyReL U starts doing
worse. None of the techniques’ returns seem to start con-
verging in this time frame except for Leaky ReL U, which
starts seeing diminishing returns after around 1.5 million
environment steps. Of note is that plasticity injection after
injection at 1 million steps initially starts performing bet-
ter, then dips around 1.5 million steps and proceeds to rise
again at 1.75 million steps. This is likely due to the relative
instability of training the new injected network.

To be certain of the veracity of our results, we would ide-
ally perform multiple runs for a longer set of environment
steps to see where each technique’s returns start to stabilize
and/or decrease, with multiple seeds after performing hyper-
parameter searches for each hyperparameter. However, we
only had access to a single laptop with a GPU to perform
these runs and did not have the computational power nor
computer memory to be able to perform longer runs.

4.1. Effective Rank

For the standard implementation, it appears that the effective
rank (Figure 2) initially starts high, decreases for the first
300k environment steps, then starts increasing again. This
is likely because all of the networks start with randomly ini-
tialized weights within the same bounds and the explanatory
power of each unit is around the same, and when we first
start training the algorithm we only need a small amount of
units to represent the complexity of the data. This causes the
initial decrease from the maximum value. Afterwards, as
data is introduced to the network, more units are repurposed
to represent the data, increasing the overall effective rank
of the network. We expect that over a larger number of
environment steps, the average effective rank would start
to stabilize or decrease once again due to the network be-
ing over-saturated with data, as is seen in (Dohare et al.,
2023). For these reasons, we believe that effective rank
would be a good indicator of whether a network is saturated
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Figure 2. Average effective rank of each algorithm’s layers during
training on the MsPacman environment. The spike in the middle
of the Plasticity Injection run happens because we start to track
the new network, which is initialized with random weights. The
old network is frozen for all subsequent environment steps after
injection, and so the metrics are likewise constant afterwards.

and plasticity loss starts to occur.

It is interesting to note that regularization tends to result in
the lowest effective ranks, and layer normalization results in
the highest. The reason regularization results in lower effec-
tive ranks is that regularization initially punishes extraneous
weights that have little explanatory power for the model. We
are not entirely sure why layer normalization results in such
high effective rank, we believe this might be because the
normalized outputs make each unit have a higher influence
on the outputs of the previous layers and thus representa-
tional complexity is spread to all of the units rather than to
a few. In the long run, this is likely what we want to prevent
plasticity loss, as information is likely more efficiently rep-
resented since each unit takes the duty of having multiple
possible roles in forming the output of a layer. Plasticity
injection seems to converge to a relatively low effective
rank before and after injection, which is likely an indicator
that the network learns a representation of the distribution
that is inefficient in storing representational complexity and
that the main benefit of injection is providing more memory
to represent complexity rather than a more efficient use of
memory.

4.2. Weight Magnitude

The weight magnitude of each technique generally increases
for all models, although at slower rates for variants of L?
regularization, as is expected. Weight magnitude does not
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Figure 3. Weight magnitude of each algorithm’s layers during train-
ing on the MsPacman environment. The drop in the middle of the
Plasticity Injection run happens because we start to track the new
network, which is initialized with random weights. The old net-
work is frozen for all subsequent environment steps after injection,
and so the metrics are likewise constant afterwards.

seem to affect the performance of the networks with weight
magnitude lower than the standard algorithm much at this
stage as layer normalization has a relatively high weight
magnitude (due to relatively larger weights being needed
for smaller normalized inputs into layers) but has the best
performance in the studied time frame. We can, however,
observe that the extreme average weight magnitude of the
standard DQN algorithm is likely a large contributing fac-
tor to the relative instability and underperformance of the
standard DQN algorithm compared to the other techniques
used on top of it. In this sense the weight magnitude when
observed at the extremes is also a good metric for the per-
formance and plasticity of the algorithm.

4.3. Updated Units

Out of the other metrics examined, the percentage of up-
dated units has the most variability based on the algorithm
used and thus also provides useful information to consider
in the execution of the techniques. The standard algorithm
starts off with a low, increases to around 500k environment
steps, and then starts decreasing again. The cause of this
is likely similar to why the evaluation returns are shaped
the way they are - the network first starts updating a few
units at a time to learn a less complex representation, and
over time includes more units into its representation as new
data is fed in. From periodic regularization, we can see
that the network tends to include more units in periods of
training without regularization (which is desired to spread
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Figure 4. Percentage of updated units of each algorithm’s layers
during training on the MsPacman environment. For LeakyReLU,
Incremental L? Regularization, and L? Regularization the percent-
age of updated units is a constant 100%. The drop in the middle
of the Plasticity Injection run happens because we start to track
the new network, which is initialized with random weights. The
old network is frozen for all subsequent environment steps after
injection, and so the metrics are likewise constant afterward.

representational complexity around units).

5. IQL Online Fine-tuning Results and
Analysis

5.1. Evaluation Return
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Figure 5. Performance results for the algorithms of base IQL, IQL
with plasticity injection once, and IQL with plasticity injection
twice implemented on the PointMass Hard environment.
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From Figure 5, we can see that both algorithms with plastic-
ity injection once and twice still lead to convergence to the
same return. When compared with the base algorithm, after
injecting, it took around 50,000 more steps for the agent to
spike in reward. Double plasticity injection does not cause
much of a difference in reward. Possible explanations in-
clude the algorithm taking the same actions given the same
states for injections of one time and two times. In other
words, hg; (z) — hgy (z) and hgy (x) — hgy (x) produce
similar results, thus not allowing the algorithm to discover
even higher-rewarding transitions.

6. Conclusion
6.1. Limitations and Future Directions

One limitation we faced was compute power. Ryan ran all of
our MsPacman experiments since he was the only one with
a machine powerful enough to handle the computational
intensiveness.

Future directions include making modifications to the way
the step is chosen for plasticity injection, e.g. tracking the
moving average of a specific or a combination of metrics
and choosing the step when this value exceeds a threshold.
This would require running the baseline algorithm once to
determine the optimal bounds on the metrics.

Furthermore, (Nikishin et al., 2023) suggested that injecting
plasticity improved computational efficiency. The idea is
that the randomized initial weights of a fresh neural network
provide a friendlier loss landscape that allows for fast train-
ing. However, we did not observe such phenomena in any
of our experiments. Trying to replicate this phenomenon
would be an interesting topic of further work. Considering
our lack of computing resources, a way to both increase
plasticity and decrease training time would give us a large
improvement in efficiency and performance.

6.2. Each Member’s Contributions

Ethan set up codebase, did implementation and writeup of
Plasticity Injection for DQN and IQL Online Fine-tuning,
implementation of basic and periodic regularization sched-
ules for DQN, some implementation of Metrics Tracked,
and ran runs and plotted data for IQL.

Ryan: Implementation, writeup, and analysis of metrics
tracked, layer normalization, and LeakyReLU; ideas, anal-
ysis, and some implementation for the regularization tech-
niques in the DQN of the MsPacman environment. Also ran
MsPacman runs and plotted data.

Leon: MNIST toy MDP and regularization. Write up for
the introduction and citations.

6.3. Link to the GitHub Repository

https://anonymous.4open.science/r/
cs285_final_proj-B25B/
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